Enabling Semantic Interoperability

for Earth Science Data

Rob Raskin, Michael Pan, Chris Mattmann Jet Propulsion Lab

Objectives

- Enable various Earth science-related projects to interoperate semantically
 - Provide a common "namespace" to define science and data-related terms
- Develop large collection of ontologies for Earth Sciences
 - Primarily land-ocean-atmosphere system

What is Semantic Interoperability?

- Two people/software/agents mean the same thing when referring to the same term
 - Lossless communication
- Namespace provides means to "register" a name
- Ontology provides means to clarify the definition of a term in a namespace

Semantics Enables Shared Understanding of Concepts

- Provides a namespace for scientific terms...plus
- Provides descriptions of how terms relate to one another
- Enables object in "data space" to be associated formally with object in "science concept space"
- "Shared understanding" enables software tools to find "meaning" in resources
- Described well using XML

Knowledge Reuse

- Semantic Web for Earth and Environmental Technology (SWEET) is an implementation of semantic interoperability
- SWEET is a concept space
- Enables scalable classification of Earth science concepts
 - Search engines use Open directory to classify contents of WWW space
- For educational use, SWEET supports navigable discovery of Earth science concepts, such as for an electronic encyclopedia
- Concept space is translatable into other languages/cultures using "sameAs" notions

Semantics to Improve Search: Common Challenges

- Same word with multiple meanings
 - Cook (Captain)
 - Cook (chef)
 - Cook (county in Illinois)
- "Wrong" (synonymous) term
 - Marine vs. sea
- Too general or too specific
 - California vs. Los Angeles

Semantic Understanding is Difficult!

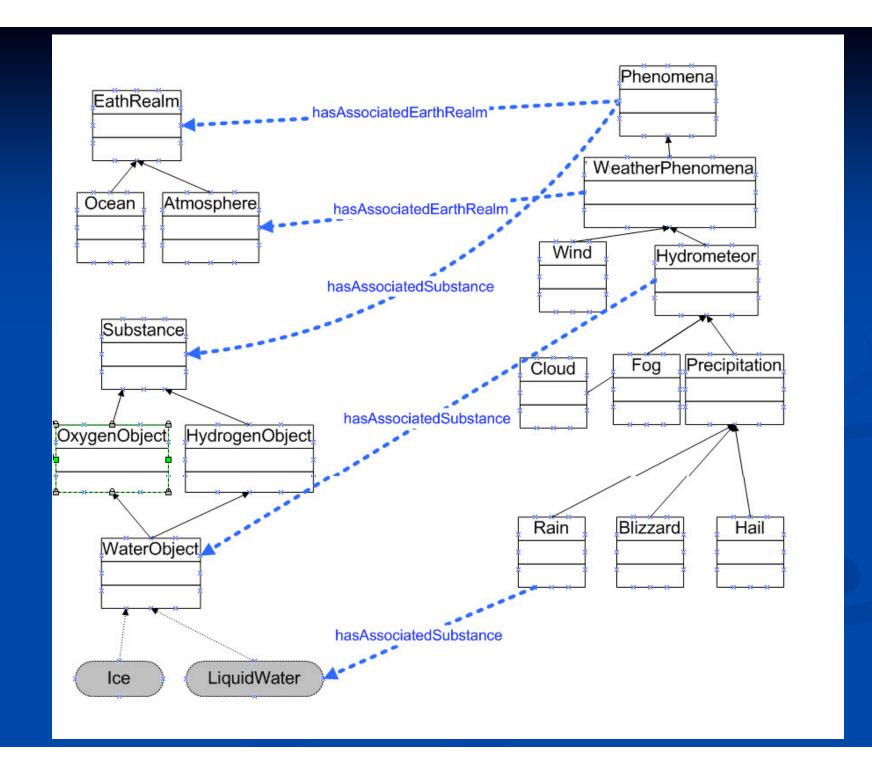
Let's eat, Grandma. Let's eat Grandma.

Time flies like an arrow. Fruit flies like a pie.

Ontology vs. Taxonomy

- Ontology
 - Children are subclasses of parent concepts
 - Parent properties inherited by children
 - multiple inheritance generally supported
 - Scalable
 - "New" concepts are often definable using multiple inheritance (e.g. Sea floor temperature) rather than creating a new definition
- Taxonomy
 - Not all properties are inherited

Barriers to Semantic Interoperability


- We tend to not see beyond our local "communites of interest" for purposes of sharing knowledge
- Why take the effort to add semantic metadata when it is "obvious" what is meant?
- Why create a formal namespace when the meaning of the terms are "obvious"?

Semantic Interoperability Using Standard Languages

- Use standard ontology language to enable ontologies to import contents from one another
- Specialized domains can extend existing ontologies

Ontology Representation in OWL

- Ontology Web Language (OWL) accepted by the World Wide Web Consortium (W3C) as a language standard
- Several XML semantic languages defined, each a proper subset of next:
 - RDF (Resource Description Framework)
 - OWL Lite
 - OWL DL (Description Logic)
 - OWL Full
- OWL is outgrowth of DAML+OIL
 - DARPA no longer part of language development

SWEET Ontologies

- SWEET includes two types of ontologies
 - Orthogonal (faceted) concepts:
 - Earth Realm (atmosphere, ocean, ...)
 - Property (temperature, pressure, CO2 conc., ...)
 - Substance (air, water, ash, ...)
 - Space (Antarctica, tropics, Washington, ...)
 - Time (Winter, Jan 2004, ...)
 - Unifying concepts:
 - Phenomena (hurricane, earthquake, ...)

SWEET Ontologies (cont.)

- Taken together, the two types of ontologies mirror the two types of scientific investigation:
 - Reductionism
 - Holism

Data Ontology

- Ancillary Data Interpretation
 - Units
 - Associate standardized units with a data object
 - Scale factor/offset
 - Missing value
- Models
 - Inputs, outputs, parameters
- Grid concepts
- Data services
 - Subset, regrid, ...

ESML Integration

- ESML provides syntax tags
- SWEET ontologies complement ESML by providing a namespace for semantic tags
- Greatly expands the possible semantic tags in ESML

Translations

- CF Names (used by ESMF)
 - Long names such as: air_temperature_at_top_of_boundary_layer
 - Conversion table maps these concepts to SWEET ontology terms (adding new concepts, as needed)

GCMD

 Conversion table maps these concepts, decomposing complex concepts into faceted concepts

Incorporating External Knowledge

- Knowledge in typical on-line knowledge bases is too large and too dynamic to store locally
 - Gazetteers, earthquake databases
- We created OWL wrappers for selected database contents
 - Getty and CIA gazetteers
 - USGS Earthquake database

Incorporating External Knowledge (cont.)

- We created a general schema for creating wrappers for a large class of on-line resources
- We created a wrapper for WMS interface specification to access georeferenced mapped information, on demand
 - Wrapper creates URL with appropriate parameters

Spatial Ontology – Polygon Representation

- All major gazetteers use bounding box to to describe extent of a region
 - Size would be too large
- We used ancillary geographic databases with polygon boundaries to represent country and state boundaries as polygons
 - Bounding box of California does not include Nevada!

Spatial Ontology – Polygon Representation (cont.)

- Storage of polygon boundaries in PostGres DBMS
 - Native polygon data type
 - But does not handle polygon with large number of edges
 - Requires generalization (resolution reduction)

Mathematical Ontology

- Expanded mathematical ontology includes:
 - Multidimensional concepts
 - Cartesian products
- Using these concepts, we defined spatial concepts and spatial operators
 - These concepts can be used to carry out spatial reasoning in future projects

Search Engine

- Developed an expanded search engine that eliminates need for exact term match
 - Finds alternative search terms, then submits union of terms to GCMD Search Engine
- Alternative terms can be
 - Synonyms
 - Parent
 - Child

Challenges

- Difficulty in getting participants to see value of common semantics
- Semantic web still far from reality, due to limited generic tools for entering ontologies and exploiting contents
- Difficulty in visualizing large ontologies
 - It is very difficult to gain community review of ontologies

What Next?

- ESIP Federation support
 - Incorporation into Federation Interactive Network for Discovery (FIND)
 - Federation Search Tool
 - Ontologies maintained by the Federation
 - Products & Services Committee
 - Community review at August Federation Meeting in Asheville

Contacts

SWEET http://sweet.jpl.nasa.gov

- Rob Raskin raskin@jpl.nasa.gov
- Mike Pan mjpan@jpl.nasa.gov